Efficient posterior sampling for high-dimensional imbalanced logistic regression
نویسندگان
چکیده
منابع مشابه
Infinitely Imbalanced Logistic Regression
In binary classification problems it is common for the two classes to be imbalanced: one case is very rare compared to the other. In this paper we consider the infinitely imbalanced case where one class has a finite sample size and the other class’s sample size grows without bound. For logistic regression, the infinitely imbalanced case often has a useful solution. Under mild conditions, the in...
متن کاملHigh-dimensional classification by sparse logistic regression
We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty ...
متن کاملEfficient High-Dimensional Importance Sampling
The paper describes a simple, generic and yet highly accurate Efficient Importance Sampling (EIS) Monte Carlo (MC) procedure for the evaluation of high-dimensional numerical integrals. EIS is based upon a sequence of auxiliary weighted regressions which actually are linear under appropriate conditions. It can be used to evaluate likelihood functions and byproducts thereof, such as ML estimators...
متن کاملA Modern Maximum-Likelihood Theory for High-dimensional Logistic Regression
Every student in statistics or data science learns early on that when the sample size n largely exceeds the number p of variables, fitting a logistic model produces estimates that are approximately unbiased. Every student also learns that there are formulas to predict the variability of these estimates which are used for the purpose of statistical inference; for instance, to produce p-values fo...
متن کاملSemi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data
Imaging neuroscience links human behavior to aspects of brain biology in everincreasing datasets. Existing neuroimaging methods typically perform either discovery of unknown neural structure or testing of neural structure associated with mental tasks. However, testing hypotheses on the neural correlates underlying larger sets of mental tasks necessitates adequate representations for the observa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2020
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asaa035